
International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

ISSN : 2580-7250

Copyright ⓒ 2017 IJISTECH

Implementation and Analysis Zhu-Takaoka Algorithm and

Knuth-Morris-Pratt Algorithm for Dictionary of Computer

Application Based on Android

Handrizal1, Andri Budiman2, Desy Rahayu Ardani3

1 AMIK Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
2,3 University of Sumatera Utara, Sumatera Utara, Indonesia

handrizal_tanjung@yahoo.com, mandrib@usu.ac.id,

desy.rahayu.ardani@gmail.com

Abstract
The string matching algorithm is the one of the most important parts in the various

processes related to data and text types, which is the word search on computer dictionary.

Computers have a basic role in the field of education, especially in teaching and learning

activities. So that the classical learning model, that is by using the book as learning

resource can be boring. To make it easier for users who searching words, we made an

offline dictionary application based on Android by applying Zhu-Takaoka algorithm and

Knuth-Morris-Pratt algorithm. The performance of Zhu-Takaoka is doing a search starts

from the end of pattern that is tailored to the text, but in Knuth-Morris-Pratt algorithm

starts from the beginning of pattern till match which the pattern used is word searched.

The result of this research indicates that the Zhu-Takaoka algorithm is faster than the

Knuth-Morris-Pratt algorithm which showed the running time of each algorithm.

Keywords: matching, string, Zhu-Takaoka, Knuth-Morris-Pratt, pattern, text

1. Introduction
Over time, the development of computers and Information Technology from time to

time continues to grow. Computers now have penetrated in all areas of life, so inevitably

we have to deal with the computerized world. Just as we communicate, in the computer

world also has its own term that many we do not know. Computers have a basic role in

the field of education, especially in teaching and learning activities. So that the classical

learning model, that is by using the book as learning resource can be boring. Computers

can increase the interest of learners because learners prefer the new things especially

those using equipment such as computers, so to increase the interest of learners, need to

be made an application that can help in learning, one of which is with the creation of a

digital dictionary application that can facilitate participants educated and can be taken

anywhere.

2. Rudimentary
2.1. String Matching

Strings can be words, phrases, or sentences. String matching is a very important

subject in the wider domain of text processing. The result of a string search in the

document depends on the technique and the way string matching is used [1].

To perform this process required two types of conditions, they are:

1. The length of the string p should be less than equal to the length of the string t. In

this case p ≤ t. (p = pattern, t = text).

2. The length of the string which is used as the search source must be longer than p
[2].

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

9 Copyright ⓒ 2017 IJISTECH

Figure 1. Text dan String [3]

2.2. String Matching Algorithm

 String matching algorithm is a basic component in implementing various existing

practical software. String matching is used to find one or more strings called patterns

(strings that will be matched into text) in strings called text (inputed strings) [1].

The performances of string matching are:

1. Moves the text with in the shift table window which has same size as the pattern

2. Takes window on the beginning of the text

3. Compare by characters on window with characters on the pattern.

4. After matching (either result match or not match), shift to right on window. This

procedure is performed repeatedly until the window is at the end of the text. This

mechanism is called the sliding-window mechanism [1].

2.3. Zhu-Takaoka Algorithm

The Zhu and Takaoka (ZT) algorithm is a variation of the Boyer-Moore Algorithm

having the same characteristics in string searching (from right to left) and using the good

suffix [4]. These characteristics are divided into two phases: preprocessing phase and

search phase. The difference between the Boyer-Moore Algorithm and the Zhu-Takaoka

Algorithm lies in the determination stage of the bad character rule. In Boyer-Moore, bad

characters consist of only one-dimensional arrays, while in Zhu-Takaoka modified into

two-dimensional arrays [5].

The characteristics of Zhu-Takaoka algorithm are:

1. Development of Boyer-Moore algorithm

2. Using two-dimensional array to calculate the value of shift.

3. Matching from right to left

Zhu and Takaoka algorithms are designed which can do a shift by considering bad-

character shifts for two consecutive text characters. During the search phase the

comparison is done from right to left and when the window is positioned on the text factor

y [j ... j + m-1] and the mismatch occurs between x [mk] and y [j + mk] while x [mk + 1 ..

m-1] = y [j + mk + 1 .. j + m-1] the shift is done with bad-character shift for text

characters y [j + m- 2] and y [j + m-1]. A well-shifted table equation is also used to

calculate shifts [1].

In preproccesing the pattern P by calculating the fringe function (in other literature

calling overlap function, failure function, etc.) indicating the largest possible s shift by

using the comparison formed before the string search. The fringe function depends only

on the characters in the pattern, and not on the characters in the text being searched.

Therefore, we can perform the initial function calculation before the string search is

performed.

2.4. Knuth-Morris-Pratt Algorithm (KMP)
KMP string searching algorithmsearches for occurrences of a "word" W within a

main "text string" T by employing the observation that when a mismatch occurs, the

word itself embodies sufficient information to determine where the next match could

begin, thus bypassing re-examination of previously matched characters.[6].

This algorithm finds all occurrences of a pattern of length n in the text of length m

with the time complexity of O (m + n). This algorithm requires only O (n) space of

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

10 Copyright ⓒ 2017 IJISTECH

internal memory if text is read from external file. All O's quantities do not depend on the

size of the alphabet space [7]. Systematically, the steps of the Knuth-Morris-Pratt

algorithm when matching strings are as follows:

1. The Knuth-Morris-Pratt algorithm begins to match the pattern at the beginning of the

text.

2. From left to right, this algorithm will match the characters per character pattern, with

characters in the corresponding text until one of the following conditions is met:

a. The characters in the pattern and in the compared text do not match (mismatch).

b. All the characters in the pattern match. Then the algorithm will notify the

discovery of this position.

3. The algorithm then shifts the pattern according to the next table, and then counts step

2 until the pattern is at the end of the text.

2.5. Android

Android is an operating system for linux-based mobile devices that includes operating

systems, middleware, and applications. Android provides an open platform for developers

to create apps [8].

3. Research and Methodology
3.1. Problem Analysis

 The problem of this research is to know the performance comparison of each string

matching algorithm, the Knuth-Morris-Pratt algorithm and the Zhu-Takaoka algorithm

based on the time difference of the running time in the dictionary of health term. The

problems in this study were identified using Ishikawa diagrams. The problems in this

study can generally be shown on the ishikawa diagram in Figure 2.

Figure 2. Ishikawa Diagram of Problem Analysis

In Figure 2. there are four categories in the comparative research of the Knuth-

Morris-Pratt algorithm and the Zhu-Takaoka algorithm. The several causes of the four

categories are as follows:

1. The user category has difficulties in searching words so that the time spent in

searching takes time to be relatife long.

2. Categories of methods, there is no method to be used by comparing the

complexity of two algorithms namely the Zhu-Takaoka and Knuth-Morris-Pratt

algorithms.

3. Category of material, the dictionary in circulation is still in print form as the book

has a shortage because it is made of paper that is easily torn and damaged,

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

11 Copyright ⓒ 2017 IJISTECH

4. Machine category is data that can not be updated because it still uses dictionary in

the form of book.

3.2. Analysis Processing

Process analysis is designed with the aim to describe the conditions of all processes

that occur and provide an overview of the parts of the system designed. The design of this

system is made with several diagrams including Flowchart, Use Case Diagram, Activity

Diagram, Sequence Diagram, and Class Diagram.

3.2.1. System Flowchart

The general system flowchart in this application is shown in Figure 3. where the

flowchart describes how the system works from the beginning of the system is opened to

completion. At the start of the search the user can immediately start the search by entering

the word in the search box field. Then the word will be used as a pattern and then sent to

the class KMP or ZT class, depending on what type of algorithm will be used by the user.

Then the data in the database will be converted into data in the form of an arraylist to then

be sent also on the class KMP or class ZT as text. The word entered then used as a pattern

will be compared with data from the database that has been used as an arraylist as text one

by one with what type of algorithm used by user. If the input pattern is found in the text,

the text is displayed in the list form below the Search Box field, otherwise it is not

displayed. Figure 3. Illustrates the search flowchart in this application:

Figure 3. System Flowchart

3.2.2. Use Case Diagram

Use case diagram is the functionality of a system, so that customers or users of the

system understand and understand the usefulness of the system to be built. In Figure 4.

describes activities that can be performed by the user, where users can search the health

term by determining the Knuth-Morris-Pratt algorithm or the Zhu-Takaoka algorithm to

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

12 Copyright ⓒ 2017 IJISTECH

be selected first. After that, the user inputs the word to be searched and will check the

term is or does not exist in the health dictionary application. From the word search results

will record the time and display the time (running time) and the number of words found to

the system screen for each algorithm and if the search word is not found then the system

will display notification (result not found).

Figure 4. Use Case Diagram

3.2.3. System Flowchart of Zhu-Takaoka Algorithm

In Figure 5. is a flowchart of the string search steps of the Zhu-Takaoka algorithm, in

case of a mismatch it will be shifted based on the greatest value between bmGs [i] and

ztbc [y [j + m-2]] [y [j + m -1]]. Whereas if a match is found then the shift is done by the

value i of bmGs at position 0 or value i = 0.

Figure 5. Flowchart of Zhu-Takaoka Algorithm

Start

Input x
(pattern)

Input y (text)

preZtBc()
preBmGs()

m = x.length ()
n = y.length ()

i = j = 0

i <= n - m

Yes

i = m - 1

i<m&&
X[i] = y[i+j]

i++
Yes

i<0 Output (j) J+= bmGs[0]

J+=MAX(bmGs[i],x
tBc[y[j+m-

2]][y[j+m-1]]

No

End

NoShowing the
output results

Yes

No

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

13 Copyright ⓒ 2017 IJISTECH

3.2.4. Flowchart of Knuth-Morris-Pratt Algorithm

Figure 6. Flowchart of Knuth-Morris-Pratt Algorithm

4. Results and Discussion
4.1. System Implementation

In the implementation process of this system there are 3 (three) activity page view,

which is main activity main menu as welcome activity, and main activity of ZT algorithm

and KMP algorithm as text search menu. While the buttons contained in the main menu as

well as the search menu there is 1 button "search" is used to start a text search according

to the word entered.

4.2. System Testing

System testing is done to ensure the system after it is built can run well in accordance

with the analysis and design that has been designed. The main focus of this research is to

examine how the system performs string search on health terms using the Zhu-Takaoka

and Knuth-Morris-Pratt algorithms

4.2.1. Search String Test with Zhu-Takaoka Algorithm

The way to search the text is to input the word into the search engine and select the

"ZT" algorithm by pressing the "Search" button then the system will automatically display

the search results. This process is shown in Figure 7.

Start

Input x
(pattern)

Input y (text)

preKmp()

m = x.length ()
n = y.length ()

i = j = 0

j < n

Yes

i++;
j++;

Yes

i>= m Output (j - i) i = kmpNext[i]

End

No

i>-1&&
x[i]!=y[j]

i = kmpNext[i]

Showing output
results

No

YesNo

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

14 Copyright ⓒ 2017 IJISTECH

Figure 7. String Search in Zhu-Takaoka Algorithm Page Display
1

In Figure 7. the search results using the "ZT" algorithm with the "av" pattern resulted

in running time of 32.425156 ms and the number of words found was 5 words.

4.2.2. Search String Test with Knuth-Morris-Pratt Algorithm

The way to search the text is to input the word into the search engine and select the

"KMP" algorithm by pressing the "Search" button then the system will automatically

display the search results. This process is shown in Figure 8.

Figure 8. String Search in Knuth-Morris-Pratt Algorithm Page Display

In Figure 8. the search results using the "KMP" algorithm with the "av" pattern resulted in

running time of 33.40446 ms and the number of words found was 5 words.

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

15 Copyright ⓒ 2017 IJISTECH

4.3. The Test Results

Test results from this research are running time of word search and word count found

in Algorithm of Zhu-Takoka and Knuth-Morris-Pratt Algorithm done to different strings.

Table 1. Test Result of Zhu-Takaoka Algorithm and Knuth-Morris-Pratt Algorithm

 on Computer Dictionary Application

The results of the test shown in Table 1 show that the total comparative results of the

two algorithms is the Zhu-Takaoka algorithm has a low total Running Time value

compared to the Knuth-Morris-Pratt algorithm, where the Zhu-Takoka algorithm is faster

for word matching than the algorithm Knuth-Morris-Pratt.

Figure 9. Comparison Chart Results Running Time Algorithm Zhu-Takaoka and

Knuth-Morris-Pratt Algorithm

From the graph above it can be explained that the speed of each algorithm depends on

the number of words found in the dictionary. In the Zhu-Takaoka (ZT) algorithm, the

required running time will be lower than the Knuth-Morris-Pratt (KMP) algorithm based

0

2

4

6

8

10

12

14

16

18

Running Time Result Graphic (ms)

Zhu-Takaoka Algorithm Knuth-Morris-Pratt Algorithm

No Pattern

Running time

(ms)

Finding word

result
Result

ZT KMP

1 i 10.51 8.65 365 Match

2 in 10.00 12.62 57 Match

3 inf 8.97 10.41 4 Match

4 info 12.24 11.59 1 Match

5 infor 10.50 10.43 1 Match

6 inform 9.68 11.60 1 Match

7 informa 7.81 10.49 1 Match

8 informat 9.05 10.99 1 Match

9 informati 14.76 15.88 1 Match

10 informatii 10.28 9.84 0 Mismatch

Total 103.8 112.5

Average 10.38 11.25

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

16 Copyright ⓒ 2017 IJISTECH

on the length of the pattern searched, while the running time on the KMP algorithm will

be higher if the input pattern is more than 1 text character.

4.4. The Complexity of Time

The complexity of time is done by seeking the big theta of the existing pseudocode.

This pseudocode is part of a program that has been designed in accordance with the Zhu-

Takaoka algorithm and the Knuth-Morris-Pratt algorithm. The calculation results from the

time complexity of the two algorithms using the average case / big theta notation are

presented in Table 2.

4.4.1. The Time Complexity of Knuth-Morris-Pratt Algorithm

Table 2. Time Complexity in Preprocessing of Knuth-Morris-Pratt Algorithm

Program Code C # C#

Integer[] table = new Integer[W.length]; C1 1 C1

int pos = 2; C2 1 C2

int cnd = 0; C2 1 C2

table[0] = -1; table[1] = 0; C3 1 C3

 while(pos < W.length) { C4 m C4m

 if(W[pos-1] == W[cnd]) { C5 m C5m

 table[pos] = cnd; C3 m C3m

 cnd += 1; C6 m C6m

 pos += 1; C7 m C7m

 } else if(cnd > 0) C8 m C8m

 cnd = table[cnd]; C6 m C6m

 else { C9 m C9m

 table[pos] = 0; C3 m C3m

 pos += 1; C7 m C7m

 }}

return table;}
C10 1 C10

From the calculation of running time in the table then obtained:

T(n) = (C1 + 2C2 + C3 + 2C4 +C10) m0 + (2C3 + C4

 + C5 +2C6 + 2C7 +C8 + C9) m 1

T(n) = m 0 + m 1

T(n) = 𝜃(m)

Table 3. Time Complexity of Knuth- Morris-Pratt Algorithm

Program Code C # C#

char[] W = pattern.toCharArray(); C1 1 C1

char[] S = source.toCharArray(); C1 1 C1

if(W.length == 0) C2 1 C2

 return 0; C3 1 C3

if(S.length == 0) C2 1 C2

 return -1; C3 1 C3

int m = 0; C4 1 C4

int i = 0; C4 1 C4

Integer[] T = createTable(S); C5 1 C5

while(m+i < S.length) { C6 n C6 n

 if(W[i] == S[m+i]) { C2 n C2 n

 if(i == W.length-1) C2 n C2 n

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

17 Copyright ⓒ 2017 IJISTECH

 return m; C3 n C3 n

 i += 1; C7 n C7 n

 } else { C8 n C8 n

 m = (m+i - T[i]); C9 n C9 n

 if(T[i] > -1) C2 n C2 n

 i = T[i]; C7 n C7 n

 else C8 n C8 n

 i = 0;

}}

C7 n C7 n

return -1; } C3 1 C3

T(n) = (2C1 + 2C2 + 3C3 + 2C4 +C5) n0 + (2C2 + C3

 + C6 + 3C7 +2C8 + C9) n 1

T(n) = n0 + n 1

T(n) = 𝜃(n)

In the Knuth-Morris-Pratt algorithm, the preprocessing phase is T (n) = θ (m) and the

search phase has T (n) = θ (n). Then the complexity of the Knuth-Morris-Pratt algorithm

is T (n) = θ (m + n).

4.4.2. The Complexity Time of Zhu-Takaoka Algorithm

Table 4. Complexity of PreZtbc Function in Zhu-Takaoka Algorithm

Program Code C # C#

int i, j, m = x.length,z= ztBc.length; C1 1 C1

 for (i = 0; i < z; ++i) C2 m C2m

 for (j = 0; j < z; ++j) C2 mn C2mn

 ztBc[i][j] = m; C3 mn2 C3mn2

 for (i = 0; i < z; ++i) C2 m C2m

 ztBc[i][x[0]] = m - 1; C3 m C3m

 for (i = 1; i < m - 1; ++i) C2 m C2m

 ztBc[x[i - 1]][x[i]] = m -1-i; } C3 m C3m

T(n) = (C1 + 2C2 m+ 2 C3m + C2mn + 2C3 mn2

T(n) = 𝜃(mn2)

Table 5. Complexity of Suffixes Function in Zhu-Takaoka Algorithm

Program Code C # C#

int f = 0, g, i, m = x.length; C1 1 C1

 suff[m - 1] = m; C2 1 C2

 g = m - 1; C3 1 C3

 for (i = m - 2; i >= 0; --i) { C4 m C4 m

 if (i > g && suff[i + m - 1 - f] < i - g) C5 m C5 m

 suff[i] = suff[i + m - 1 - f]; C2 m C2 m

 else { C6 m C6 m

 if (i < g) C5 m C5 m

 g = i; C3 m C3 m

 f = i; C7 m C7 m

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

18 Copyright ⓒ 2017 IJISTECH

 while (g >= 0 && x[g] == x[g + m - 1 - f]) C8 m C8 m

 --g; C9 m C9 m

 suff[i] = f - g;

 }}}
C2 m C2 m

T(n) = (C1 + C2 + C3)m 0 +(2C2 + C3 +C4
 + 2C5 +

 C6 + C7 + C8 + C9) m1

T(n) = 𝜃(m)

Table 6. Complexity of PreBmGs Function in Zhu-Takaoka Algorithm

Program Code C # C#

int i, j, m = x.length; C1 1 C1

int[] suff = new int[m];

C1 1 C1

suffixes(x, suff);

C2 1 C2

 for (i = 0; i < m; ++i) C3 m C3m

 bmGs[i] = m; C4 m C4m

 j = 0; C5 m C5m

 for (i = m - 1; i >= 0; --i) C3 m C3m

 if (suff[i] == i + 1) C6 m C6m

 for (; j < m - 1 - i; ++j) C3 m2 C3m2

 if (bmGs[j] == m) C6 m2 C6m2

 bmGs[j] = m - 1 - i; C4 m2 C4m2

 for (i = 0; i <= m - 2; ++i) C3 m C3m

 bmGs[m - 1 - suff[i]] = m -

1 - i;

}

C4 m C4m

From the calculation of running time table above:

T(n) = (2 C1 + C2)m 0 +(3C3 +2C4
 + 2C5 + C6) m1 +

 (C3 + C4 + C6) m2

 = m0 + m1 + m2

T(n) = 𝜃(m2)

Table 7. Complexity of BM Function Zhu-Takaoka Algorithm

Program Code C # C#

int[][] ztBc = new int[256][256]; C1 1 C1

int[] bmGs = new int[m]; C1 1 C1

preZtBc(x, ztBc); C2 1 C2

preBmGs(x, bmGs); C2 1 C2

 j = 0; C3 1 C3

 while (j <= n - m) { C4 m C4m

 i = m - 1; C5 m C5m

 while (i >= 0 && x[i] == y[i + j]) C4 mn C4mn

 --i; C6 m C6m

 if (i < 0) { C7 m C7m

 result.add(j); C8 1 C8

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

19 Copyright ⓒ 2017 IJISTECH

 j += bmGs[0]; C9 m C9m

 } else if(j + m - 2 >= 0) { C10 m C10m

 j += Math.max(bmGs[i], ztBc[y[j + m - 2]][y[j + m - 1]]); C9 m C9m

 } else C11 m C11m

 j += bmGs[i];} C9 m C9m

 return result;} C12 1 C12

T(n) = (2C1 +2 C2 + C3 + C8
 + C12)m 0 +(C4+ C4 n

 + C5 + C6 + C7 + 2C9 C10 + C11)m1 + C4 mn
 = m0 + m 1 + mn

T(n) = 𝜃(mn)

In the Zhu-Takaoka algorithm, the pre-process phase ztBc has T (n) = Ɵ (mn2), Suffix T

phase (n) = Ɵ (m), the pre-process phase of bmGs has T (n) = Ɵ (m2), and the search

phase has T (n) = Ɵ (mn). Then the complexity of the Zhu-Takaoka Algorithm is Ɵ (mn).

5. Conclution
From the design and manufacture to the program testing with Zhu-Takaoka algorithm

and Knuth-Morris-Pratt algorithm, it can be obtained some conclusions and suggestions

for further program development.

5.1. Conclution

From the research conducted, the conclusions that can be taken are:

1. The application of string matching algorithm that is Zhu-Takaoka algorithm and

Knuth-Morris-Pratt algorithm is by doing the implementation into a dictionary

application of health term so that it can be known to optimize the use of both

algorithm by doing system test.

2. Comparative results in the study show that the Zhu-Takaoka algorithm is faster than

the Knuth-Morris-Pratt algorithm seen based on the running time used in the word

search process and depending on the number of words found with the average Zhu-

Takaoka algorithm result and the Knuth-Morris-Pratt algorithm because the workings

of these two algorithms are very different. In the Zhu-Takaoka algorithm the word

search is performed by shifting characters based on ztBc and bmGs, while Knuth-

Morris-Pratt performs the search process by using fringe functions.

3. The time complexity of the Zhu-Takaoka algorithm is Ɵ (mn), and the Knuth-Morris-

Pratt algorithm is Ɵ (m + n), where to calculate the fringe functions, this algorithm

takes time Ɵ (m) and for string searching requires time Ɵ (n).

5.2. Suggestions

The following are suggestions that can be used for the development phase of this

system's research, among others:

1. It is suggested to further development to compare performance with other string

matching algorithms such as Smith Waterman, Approxiamate string matching, and

Rabin Karp algorithm to find out which string matching algorithm has the fastest time

complexity.P

2. Further development can create dictionaries online so that data can be updated

automatically on the user application without having to re-install the application.

References

[1] Charras, C. & Lecroq, T. 2004. Handbook of Exact String-Matching Algorithms.

London: King’s College Publications.

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

20 Copyright ⓒ 2017 IJISTECH

[2] Abu-Zaid, Ibrahim M. & Emad Kh. El-Rayyes. 2012. Parallel Search Using KMP

Algorithm in Arabic String. Int. J. of Science and Technology. Vol.2 No.7 : pp.

2224-3577.

[3] Wayne,K. & Sedgewick, R. 2014. Algorithms Fourth Edition: Substring Searc.

[4] ZHU, R.F. and TAKAOKA, T. 1987. On Improving the Average Case of The Boyer-

Moore String Matching Algorithm. Journal of Information Processing 10(3) pp.173

177.

[5] Sumit K. Aggarwal, 2005. Analysis of string-searching algorithms on biological

sequence databases. Research Communications, Vol. 89, No. 2 pp. 368-374.

[6] Singla, Nimisha & Deepak Garg. 2012. String Matching Algorithms and Their

Applicability in various Application, Int. J. of Soft Computing and Engineering.

Vol.I pp. 2231-2307.

[7] R.Sadli, 2001. Optimization of sequence queries in database systems, Proceeding

PODS '01 Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pp. 71-81..

[8] Margaret B, 2011. Android: Changing the Mobile Landscape, IEEE pervasive

Computing Vol. 10 No. 1 pp 4-7.

International Journal Of Information System & Technology

Vol. 1, No. 1, (2017), pp. 8-21

21 Copyright ⓒ 2017 IJISTECH

Authors

1st Author

Handrizal

Lecturer of AMIK Tunas Bangsa Pematangsiantar

handrizal_tanjung@yahoo.com

2nd Author

Andri Budiman

Lecturer Of University of Sumatera Utara, Sumatera Utara,

Indonesia

mandrib@usu.ac.id

3rd Author

Desy Rahayu Ardani

University of Sumatera Utara, Sumatera Utara, Indonesia

 desy.rahayu.ardani@gmail.com

